Migrating towards a Plant-Wide Optimized Production Control System

 

By Kris Lauwers, Senior Manager Global Solutions BeNeLux, Rockwell Automation

Today's manufacturers face a complex marketplace and significant pressure to balance multiple priorities centered on globalization, sustainability, innovation and productivity. 

Rockwell Automation understands the realities of the marketplace and has developed an approach to Plant-Wide Optimization that helps manufacturers meet these challenges and capture the opportunities they represent.

In this evening session we will explain how solutions based on Rockwell Automation PlantPAx, our Distributed Control System,  enable Plant-Wide Optimization and help the process industry drive more visibility and flexibility, better production intelligence and higher asset utilization overall. 

 

Presentation file here

 

Floating LNG – Monetization of Stranded Gas

 

BJos Leo, Director of Business Development, CB&I

The presentation provides an overview of the FLNG initiatives in the market. As a result of the FID decision on Shell Prelude FLNG unit, the energy market has seen a spin off with new activities on the FLNG front. FLNG was till recently the domain of stranded gas fields that could only be monetized by a floating production unit. The FLNG market now has become more robust - financiers, LNG off-takers and energy companies have gained trust by the fact that the first FLNG is actually being built.

As a consequence, more field developers are now embracing the FLNG application. Spearpoint areas for FLNG include Australasia, offshore Brazil and offshore Africa. Apart from a feasible vehicle to develop stranded offshore gas fields, the FLNG units are considered a viable proposition for areas where the realization of a conventional LNG project might be constrained. 

There appears to be an analogy between the market for crude oil FPSOs, floating storage and regasification units (FSRUs) and potentially floating LNG units (FLNGs). For FPSOs and FSRUs, the developments are characterized by a long development period with only a few players being active. Once the new technologies were accepted by the industry, there was a boost in the development within a short time span.

It is interesting to see if FLNG is moving in the same direction.

The presentation will be discussing the market developments, the market drivers and the actual players.

 

Presentation file here

 

AIChE / Delta Process Academy Seminar 2016 - Safe start-up of Chemical Plants - Consequences for design, engineering, commissioning and operation

Excellence in safety is the key to address the increasing complexity of industrial production processes and the increase of rules and regulations both in Europe and internationally. One of the priorities is reduction of the number of incidents during start-up and non-routine operation of chemical plants.

25 years lessons learned start-up and non-routine operation of a cracker plant, Geert Vercruysse, BASF

The process safety concept of a plant is determined during the engineering phase of a project. Once the process is started this safety concept will be validated during the life cycle of the plant, based on operational experience and lessons learned from incidents. In the presentation three incidents, related to start up and shutdown, will be elaborated in detail and its impact given on the process safety concept. Further it will be illustrated that similar scenarios can/could occur in different process unit set ups.peration of a cracker plant. Presentation file here

Safe Start-up culture, Marcel Beekman, Fluor

Safe Startup development should be done early in design phase. Considerations for Design, Engineering and Construction phases are discussed:

  •  Company Culture
  •  Design and good operability practices
  •  Safety in Construction
  •  Turn Over Development and Safe Hand Over
  •  Training and familiarization of Operations
  •  Pre-commissioning
  •  PSSR/Operational Readiness
  •  Commissioning and Start-up 

Presentation file here

Pressure Relief Systems - Thinking Ahead for a Safe Start-up, Bob Siml, Siemens 

It is essential to have a thorough Management Of Change (MOC) process in place to identify pressure relief systems that may need to be adjusted.

Analysis tools can improve the detailed analysis of complex pressure relief systems such as dynamic simulation, QRA and Safety Instrumented Systems. Non-normal operations during start-up should also be considered to ensure proper safeguards are in-place. Further, training, operational procedures and the limitations of relief systems must be considered.

One of the challenges is to consolidate all documentation in a digital platform to facilitate PHA’s and prestart-up reviews. Also addressed are lessons learned in the design, procurement, and commissioning process. Presentation file here

Design considerations for switching a cracking furnace between normal operation and decoke mode, Menno van der Bij, Technip

Design considerations for switching a cracking furnace between normal operations and decoke mode This paper presents the design considerations for the change-over system for the motor operated cracked gas valve (CGV) and decoke effluent valve (DEV) of ethylene cracking furnaces.

A steam cracking furnace regularly requires decoking due to coke formation inside the radiant coil. The furnace is at end of run (EOR) condition when the furnace reaches one of the EOR criteria. Then the furnace has to be switched from cracking mode to decoking mode. During decoking mode, air is introduced into the furnace in order to gently burn off the coke layer.

Switching a furnace from cracking mode (steam-hydrocarbon service) to decoking mode (steam-air service) requires an adequate handling of the involved risks in order to guarantee safety for people and environment.

This paper will explain the functionality and the safety principles of the system resulting from the performed hazard and operability (HAZOP) study and safety integrity level (SIL) review meetings. It addresses how the cracking and decoking mode switch-over can be designed to comply with today’s standards. Presentation file here

 

 

Vertical integration and information sharing - IT/OT integration, integrated product management system

By Marcel Kelder, Sales Manager Advanced Solutions at Yokogawa Europe B.V.

Vertical integration and information sharing is a way of providing correct information throughout the vertical supply chain of a company. Vertical integration is a powerful technology with great potential to help companies sharing their data to answer business questions that traditionally were too time consuming to resolve. The success of a vertical supply chain critically depends on effective ways to share logistical information.
Improving the vertical information flow is a key success factor for vertical supply chains. It makes companies more agile and flexible regarding changing market conditions and provides the single truth to shareholders and other stakeholders. Although the justification for integration may sound logical, the brutal fact is that many companies in Europe are struggling with integration. The question is why.
This presentation explains the importance of vertical integration for companies. It is discussed why it is so difficult to initiate integration programs. Examples will be given of companies that decided to integrate business and operational applications. Best practices to establish vertical integration to complete the project successfully are discussed.

 

Presentation file here

 

Waves of change: where no engineering generation has gone before By Claus-Peter Hälsig & Martijn Glass

 

By Claus-Peter Hälsig & Martijn Glass

We are where we are. And everything around seems normal and we quickly think that:

- "It has always been this way". But we know that's not true: if we go back in time, things were very different.

- "It will always stay the same". But we know that's not true either: things will change. The big question is "how will things change?" In this presentation we'll be looking at waves of change in 5 big areas that effect engineering. For each topic we'll look at two waves that have already happened ... one wave has only recently broken ... and then we'll try to extrapolate those three waves and predict what the next wave will look like. Come join us on this journey and together try to predict the future, a place where no generation has gone before!

 

 

Presentation file here