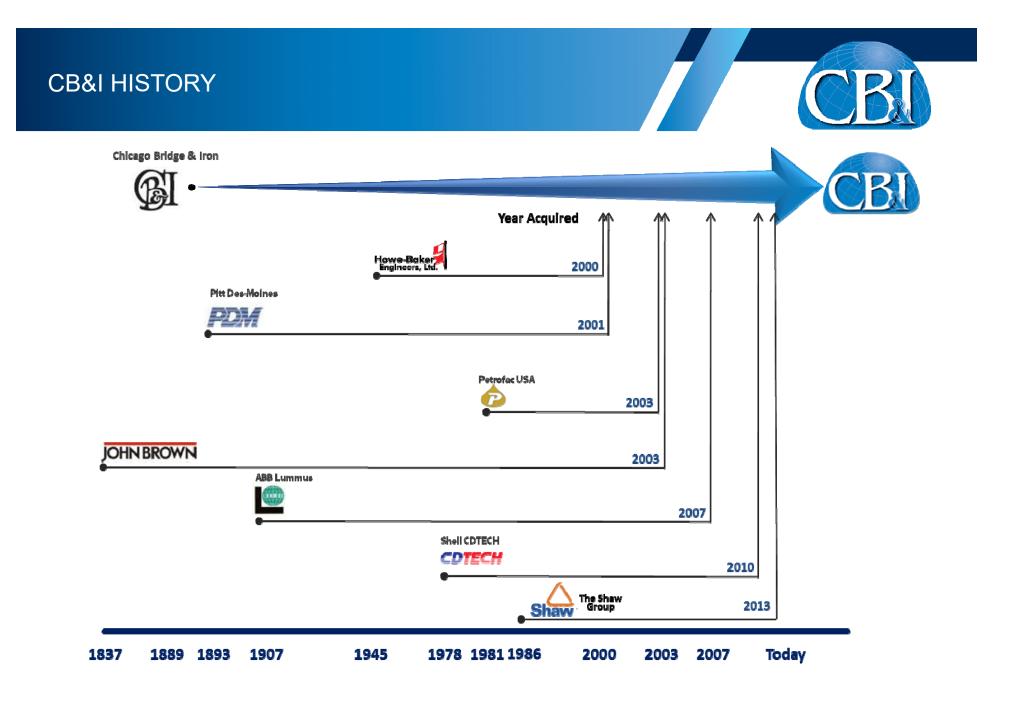


Successful Operation of the First AlkyClean[®] Solid Acid Alkylation Unit

June 29, 2017 AIChE Lecture Dinner Meeting

A World of **Solutions**

OVERVIEW


- Leading provider of technology and infrastructure for the energy industry
- 125+ years of experience and expertise in reliable solutions
- \$19.3 billion backlog (Mar. 31, 2017)
- More than 40,000 employees worldwide
- Relentless focus on safety: 0.00 LTIR (Mar. 31, 2017)

CDTECH in the Beginning – Ingenuity at Work!

CBI

Site of Technology's birth in 1977:

Larry Smith's Laundry Room

Pasadena, Texas

A World of **Solutions**

From here..... in 1988

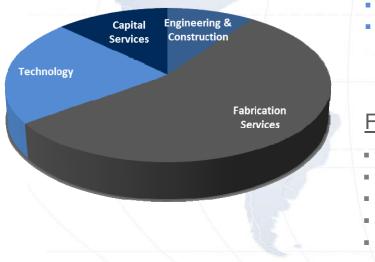
South Houston Site –

Commercial Development Unit

(CDU)

A World of Solutions

State of the Art


Research Facilities in

Pasadena, Texas

BREADTH OF SERVICES

2017 Q1 Operating Income

Technology

- Licensed technology
- **Proprietary catalysts**
- **Technical services**

Fabrication Services

- Fabrication & erection
- Process & modularization н.
- Pipe fitting and distribution
- Engineered products
- Specialty equipment ÷.,

Engineering & Construction

- Engineering
- Procurement
- Construction
- Commissioning

Capital Services

- Program management
- Maintenance services е.
- Remediation and restoration
- **Emergency response**
- Environmental consulting

TECHNOLOGY OVERVIEW

Capabilities

- Petrochemical, gas processing and refining technologies
- Proprietary catalysts
- Consulting and technical services

Differentiation

- Most complete portfolio of olefins technologies
- World leader in heavy oil upgrading technologies
- Breadth of technologies provides complete solutions

CBI

A World of Solutions

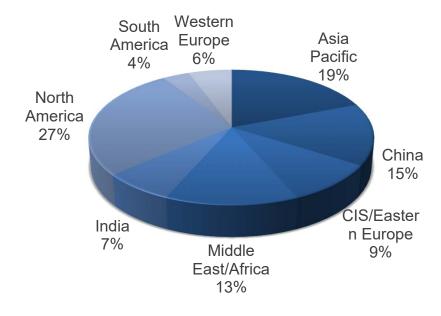
Commitment to Technology: R&D

Chevron Lummus Global, Chevron, Richmond, CA Lummus Novolen Technology, BASF Site, Ludwigshafen, Germany Technology Development & Manufacturing Center, Pasadena, TX

Over 3500 Patents

Core Values: Safety, Ethics, Teamwork and Innovation

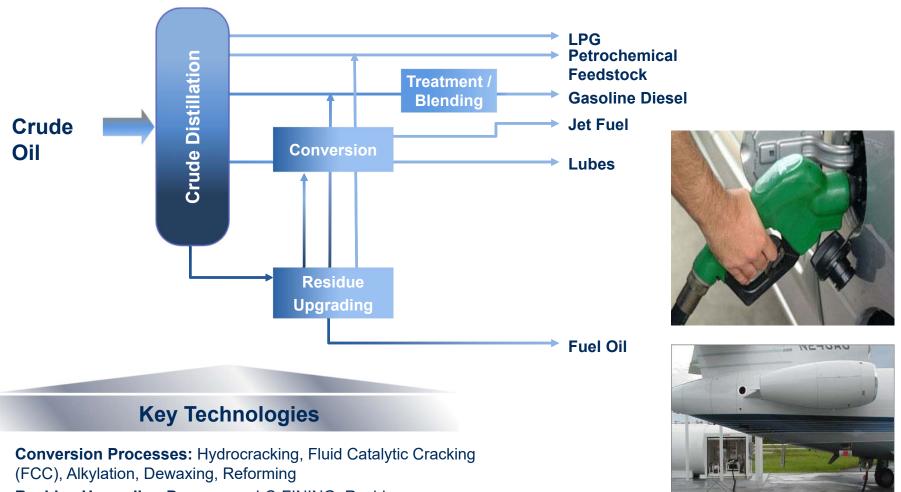
Lummus Process Technologies



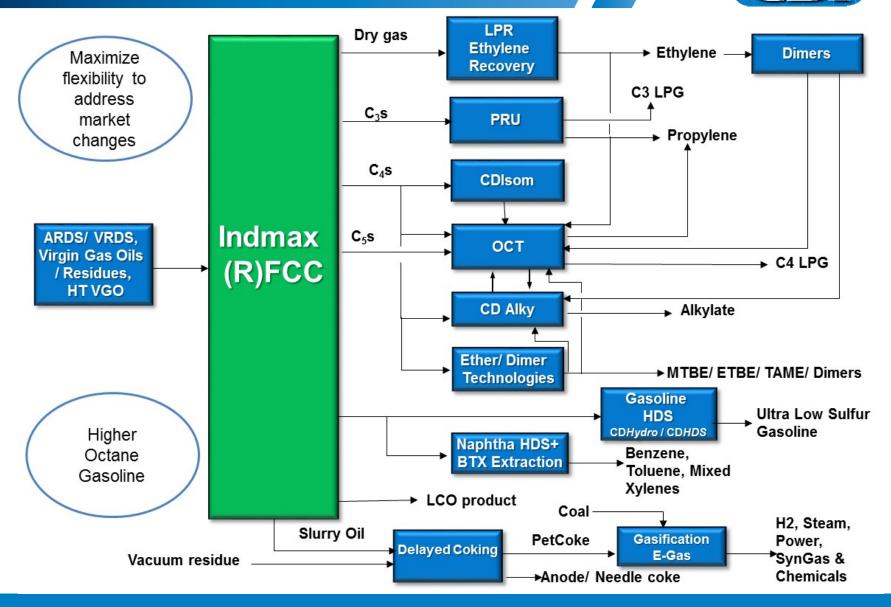
d to distribute this brochure to Chicago Bridge & Iron Comp 15M0I7013H rev24 112.15

Refining Portfolio Alkylate Methanol Alkylation Ethanol Hydrogen Plant Sat. Gas MTBE **Butane Butane** Plant ETBE Isomerization Dehydrogenation Ethylene Plant C₄s Naphtha **ISOMPLUS®** Crude Unsat Hydrogenation ISOTREATING Unit **Gas Plant** Middle Distillates **FCC Gasoline** TAME (R)FCC HDS TAEE Ethylene Plant Feed Methanol Ethanol Naphtha → Jet ISOCRACKING VGO → Diesel ISODEWAXING Hydrofinishing **Thermal Gasoil** VR Conversion H_2S Sulfur RDS / VRDS NH₃ Recovery Visbreaking & **Deep Thermal** AR Conversion **LC-FINING** H₂ Rich Hydrogen ↓ UCO LC-MAX Gas Recovery → Fuel Oil LC-SLURRY **Delayed Coking** Coke H₂, Syngas (fuel, anode, needle) CLG E-GAS ►DAO Power CB&I SDA Pitch

Global Technology Awards 2005-2015


 2005-2015 Technology Awards

Technology	Awards
Ethylene	39
ОСТ/СРТ	36
MTO/LPR	18
Ethylbenzene/Styrene	19
Butadiene Extraction	24
CATOFIN[®] Dehydrogenation	15
Cumene/Phenol	6
Polypropylene	19
Other Petrochemical	11
Ethers	19
Gasoline HDS	28
Delayed Coking	23
FCC	36
Alkylation	6
ISOCRACKING®	39
ISOTREATING [®]	27
Lubes (dewaxing/hydrofinishing)	25
RDS/VRDS/OCR/UFR	18
Visbreaking	15
Other Refining	11
Sulfur	66
Hydrogen	63
Gas Processing	32
Coal/Petcoke Gasification	6


(as of 12/2015)

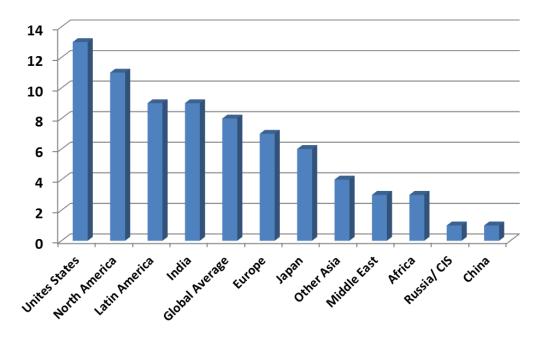
Refining Technologies

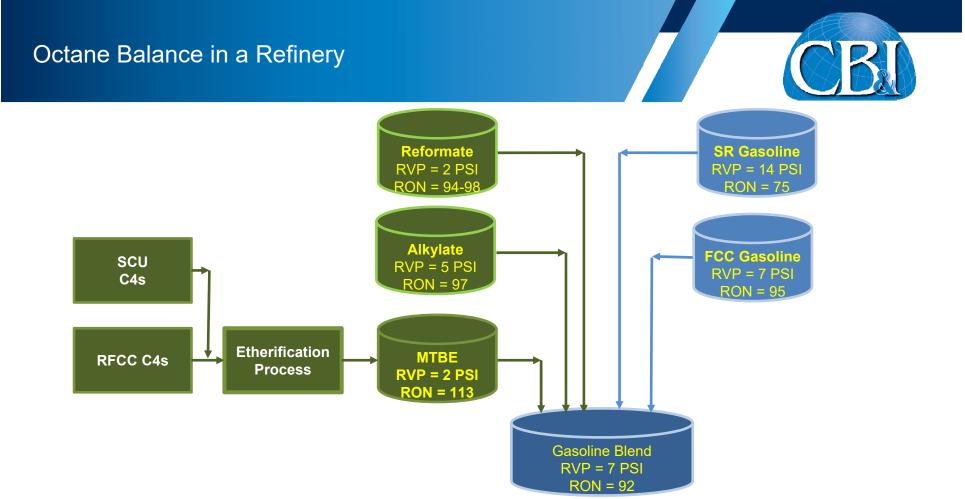
- Residue Upgrading Processes: LC-FINING, Residue Desulfurization, Delayed Coking, Visbreaking
- Treatment Processes: Hydrotreating, Hydrodesulfurization (HDS)

CB&I's Innovative Technology Bundling

What is Driving the Demand for Octane?

- Global Fuel Demand Increasing, Including Gasoline
- High Octane Components Being Removed from Gasoline Pool
- Tighter Government Mandates
- Higher Performance Engines Requirements
- Overall Octane Deficit

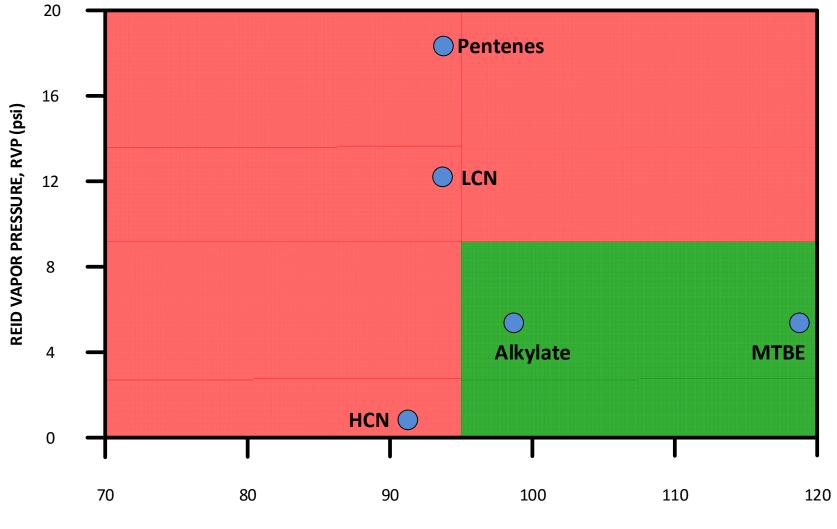

	China V	US Tier 3	California CaRFG3	Euro 5
Sulfur, ppm	10	10	15	10
Olefins, %	24	10	4	18
Aromatics, %	40	25	22	35
Benzene, %	1	0.62	0.7	1
RVP, kPa Winter/Summer	85/65	7.0 psi ~48 kPa	7.0 psi ~48 kPa	60
Effective	Jan. 1, 2018	Jan. 1, 2017	Jan. 1, 2012	Jan. 1, 2009



How Do We Address the Octane Balance Competitively?

- Blend options for meeting the octane demand
 - Reformate
 - High aromatics content
 - Associated yield loss at high severity operation
 - Ethers (except US)
 - Acceptable, up to the oxygen content limit
 - Bio-ethanol
 - Iso-octane/ Iso-octene
 - No volume gain on olefin
 - Alkylate
 - The 'Preferred' blend component
 - No olefins or aromatics, low Sulfur, low RVP

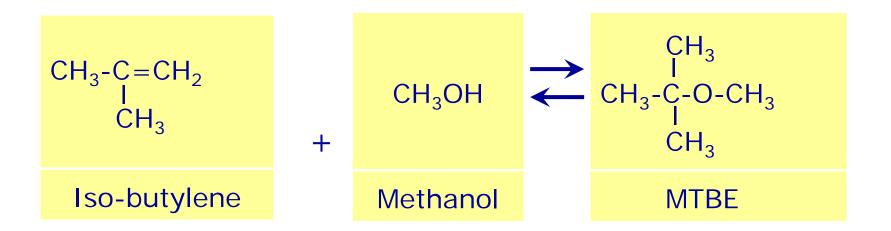
Average Alkylate Content of Gasoline Pool, %



- Octane Loss must be compensated by using higher value octane boosters reformate, alkylate, MTBE
- Typical value of octane : ~US\$ 1 / bbl / octane point
- Example:
 - 75,000 BPSD FCC gasoline, 1 RON point octane loss

Cost of 1 RON Point = US\$ 23 million, every year

Blending Properties of Some Gasoline Blending Stocks



CLEAR RESEARCH OCTANE NUMBER (RON)

MTBE Process Chemistry

Main Reaction

CDAlky Sulfuric Acid Alkylation Chemistry

Primary Alkylation Reaction

C3 Olefin Alkylation:

iC ₄	+	C3=	\rightarrow	C7 Alkylate
$2iC_4$	+	C3=	\rightarrow	C3 + C8 Alkylate

C4 Olefin Alkylation:

iC₄ +

C4= → C8 Alkylate 2,2,4-trimethylpentane (TMP) 2,3,3 TMP 2,3,4 TMP

RON: 100

RON: 106

RON: 109

C5 Olefin Alkylation:				
iC ₄	+	C5=	\rightarrow	C9 Alkylate
$2iC_4$	+	C5=	\rightarrow	iC5 + C8 Alkylate

Sulfuric Acid Alkylation Chemistry

- Undesirable Side Reactions
 - Polymerization
 - Hydrogen Transfer
 - Disproportionation
 - Cracking
 - Contaminants, i.e., Oxygenates, Butadiene, Mercaptans, Aromatics
- By-Products

SO2

- Acid Soluble Oil (ASO)
 - Esterification

Polymerization

 $C_4H_8 + H_2SO_4 \rightarrow MBS mono-butyl sulfate$ $2 MBS → H_2SO_4 + DBS di-butyl sulfate$ $<math>xC_4H_8 \rightarrow C_{4x}H_{8x+2}$

 $2 iC_4 H_{10} + C_5 H_{10} \rightarrow C_8 H_{18} + C_5 H_{12}$

 $2 C_8 H_{18} \rightarrow C_7 H_{16} + C_9 H_{20}$

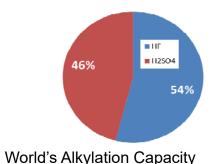
 $C_xH_{2x+2} \rightarrow C_vH_{2v} + C_{x-v}H_{2(x-v)+2}$

 $H_2SO_4 + C_xH_y$ (ASO) → $2H_2O + SO_2 + C_xH_{y-2}$

Strategy: <u>Minimize undesirable side reactions with Colder Reaction Temperatures</u> For C4= & C5= operating at LOW TEMPERATURE is even more CRITICAL!

 $xC_4H_8 \rightarrow C_{4x}H_{8x+2}$

Traditional Commercialized Alkylation Options


• HF Alkylation

- High quality alkylate, low acid consumption, good feedstock flexibility
- Extremely hazardous; not preferred anymore
- Some refiners are considering shutting down existing units due to risk profile
- Public pressure is growing due to safety and environmental risks

Sulfuric Acid (SA) Alkylation

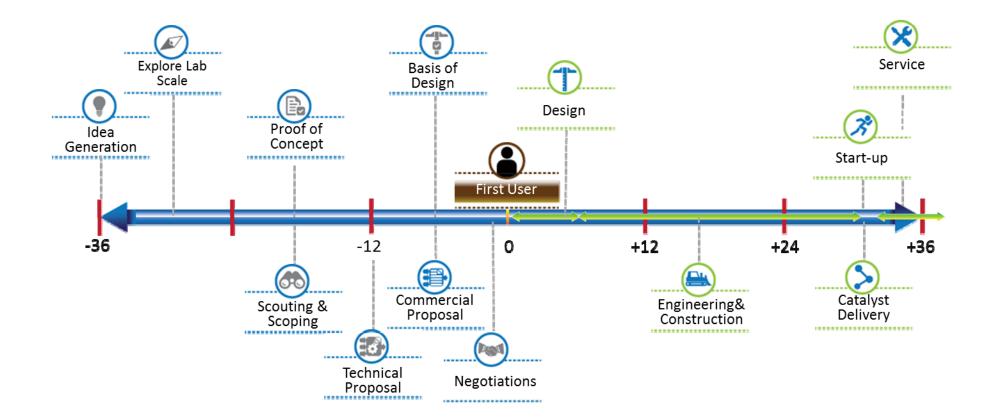
- The alkylation technology of choice for refiners at this time
- Currently the best choice in balancing the safety/operability issues with benefits of high quality alkylate (particularly at low temperatures)
- CDAlky® has become the technology of choice for sulfuric acid alkylation

CDAlky Commercial Experience

> CD*Alky*[®] Has Become the Alkylation Technology of Choice:

~120 kBPD Alkylate Capacity by 2020

Licensee	Capacity		Start-up	Awarded	Feedstock	
LICENSEE	BPD	KTA	Start-up	Awarueu	reeusiock	
Sincier, PRC (1)	5,000	200	2013	2012	C4 Raffinate	
Haiyue, PRC (1)	15,000	600	2014	2011	C4 Raffinate	
Tianheng, PRC (1)	5,000	200	2014	2012	C4 Raffinate	
YuTianHua, PRC	6,800	265	2017	2014	C4 Raffinate	
S-Oil, Korea (2)	16,000	624	2018	2014	C4s	
Pertamina, Indonesia (2)	7,400	290	2019	2016	FCC C4s	
Undisclosed, USA (2)	23,000	900	2020	2016	FCC C5s	
Zhejiang Pet. Co. (ZPC), PRC	14,000	555	2018	2016	C4 Raffinate	
Yanchang, PRC	5,000	200	2019	2016	C4 Raffinate	
PetroChina Location 1, PRC	12,000	420	2018	2017	C4 Raffinate	
PetroChina Location 2, PRC	5,000	200	2018	2017	C4 Raffinate	
PetroChina Location 3, PRC	6,500	250	2018	2017	C4 Raffinate	


Footnotes: (1) Exceeded all performance guarantees (2) Operate conventional sulfuric acid alkylation unit

One of the top 5 finalists for the 2015 Kirkpatrick Chemical **Engineering Achievement Award**

A World of Solutions

Development Timeline – Looking ahead 5-7 years

- Ionic Liquid (IL) Alkylation
 - Ionic Liquid alkylation was commercialized in a 100 KTA unit in China (2013)
 - Potentially removes some of the safety and hazard issues:
 - This needs to be confirmed particularly in co-catalyst preparation
 - Capital intensive: \$130 MMUSD for 100 KTA (complex IL/HC separation)
 - High utility consumption: 50% more than sulfuric acid alkylation
 - Chlorides in the alkylate product: Post-treatment unavoidable
 - Reported alkylate quality value falls short of a technology breakthrough

Solid Acid Catalyst Alkylation

- Inherently safer than liquid acid technologies, particularly HF

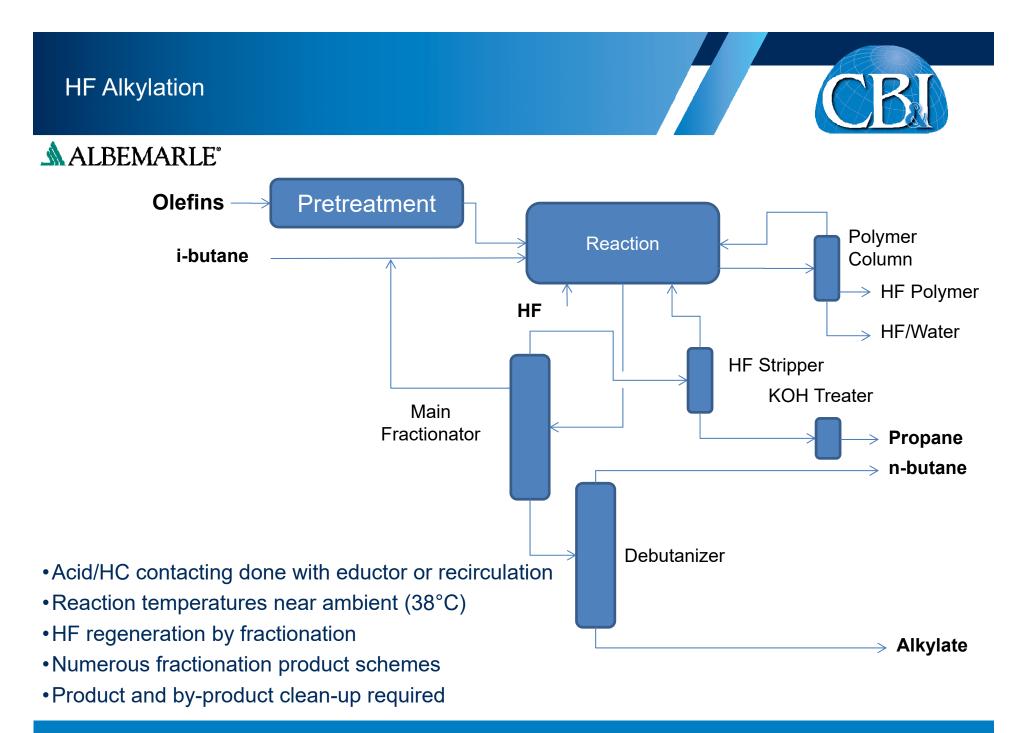
Optimized for low to average alkylate capacities

- CB&I and Albemarle successfully commercialized the first solid acid alkylation technology in China in 2015 using AlkyClean[®] technology (capacity 2,700 BPD)
- AlkyClean technology is the first and only commercialized solid acid alkylation technology in the world

The AlkyClean® Process

ALBEMARLE[®]

Challenges with HF Alkylation Units:


- Safety issues
- Environmental issues
- Operational issues

Revamps & Grassroots Solution offered by CB&I and Albemarle :

An environmentally friendly and competitive Solid Acid Catalyst technology to replace HF alkylation technology: *AlkyClean*

 $\bigcirc \mathsf{R}$

HF Alkylation: Safety Issues

ALBEMARLE[®]

Incident at Gumi, S-Korea

- September 27, 2012
- Unloading of HF to Storage Tank

 $\bigcirc R$

- 5 people died
- 18 people injured
 - > 3000 people evacuated
- Difficult to approach
- Difficult to decontaminate
- Agricultural damage
- Vehicle damage
- Livestock affected

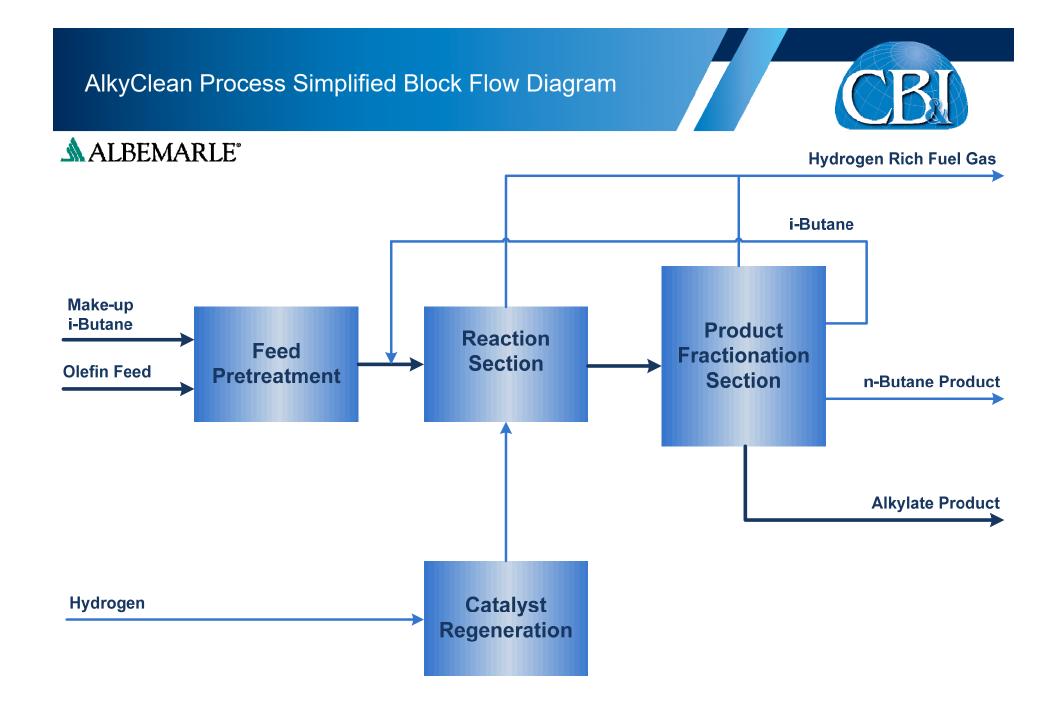
HF Alkylation: Environmental Issues

ALBEMARLE[®]

- Avoiding HF Release
- Minimizing HF Handling:
 - Transportation
 - Storage/Inventory
 - Regeneration
- Minimizing Waste Disposal
- Minimizing Impact of Other Refinery Units Incidents:
 - Potential major impact
 - Torrance refinery

Costly & Continuous Mitigation Required

HF Alkylation: Operational Issues



- Inherent Drawbacks of HF Alkylation:
 - Expensive materials used to avoid/minimize corrosion
 - Corrosion, Plugging likely in isoStripper due to HF breakthrough
 - Breakthrough of HF with products/by-products
 - Post-treatment of products required
- Maintenance & Turnaround:
 - Frequent turn-around needed
 - Time on stream reduced significantly
 - Safety Risks
- Production:
 - Yield Loss due to the production of Acid Soluble Oil (ASO)
- Operability:
 - Operation more difficult compared to other refining units

Client Value Proposition – AlkyClean

- Commercially proven with over 1 year of successful operation
- Inherently Safer and Environmentally Friendly
 - No liquid acid used in the process
 - No corrosion
 - No safety risks through exposure
- Significant Operational Risks Reduction
 - Eliminate HF safety risks
- Very Easy to Maintain and Operate
 - Simple & robust operation: Fixed beds
 - No corrosion
- High Product Quality
 - Higher octane alkylate
 - No Acid Soluble Oil

AlkyClean Differentiators

- Only Solid Acid Alkylation Process Commercially Proven
- Catalyst Supplier Albemarle:
 - Leader in catalyst manufacturing
 - Leader in catalyst development
- Optimized Catalyst Regeneration System:
 - Longer catalyst cycle/life
- Tolerant to Feed Contaminants by Design
 - Process design
 - Catalyst

AlkyClean Technology

- Reactor Type: Fixed Bed Reactor ...
 - Well Know & Easy to Operate
- Catalyst Type: AlkyStar[™]
 - Zeolite Based Catalyst
 - Noble Metal Function
- Catalyst Regeneration Scheme: Maintain Catalyst Activity...
 - Regular & Cyclical at the Alkylation Conditions
 - Occasional Regeneration at Higher Temperature

AlkyClean Development – A Brief History

ALBEMARLE[®]

CB&I and Albemarle Catalysts:

- Cooperation since 1996
- Bench scale pilot unit in Amsterdam

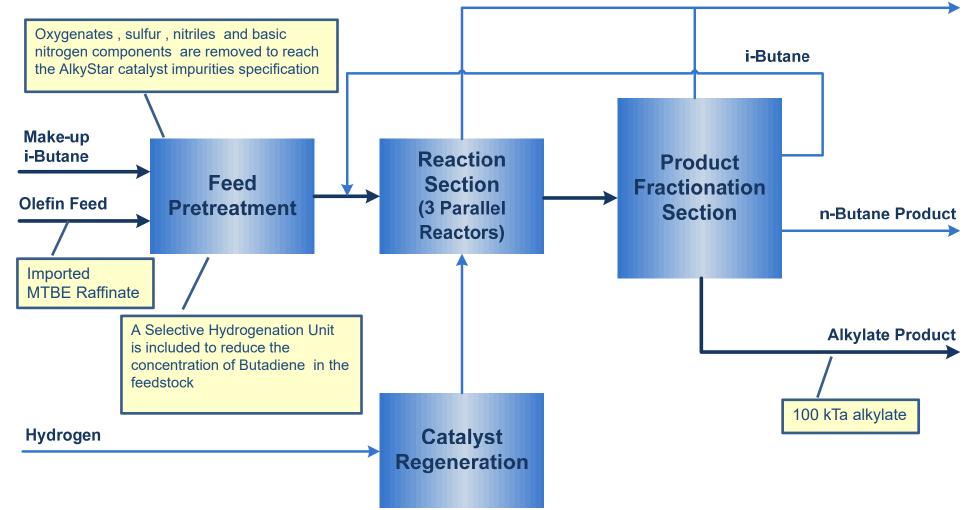
• First Licensee : Shandong Wonfull, Zibo, China

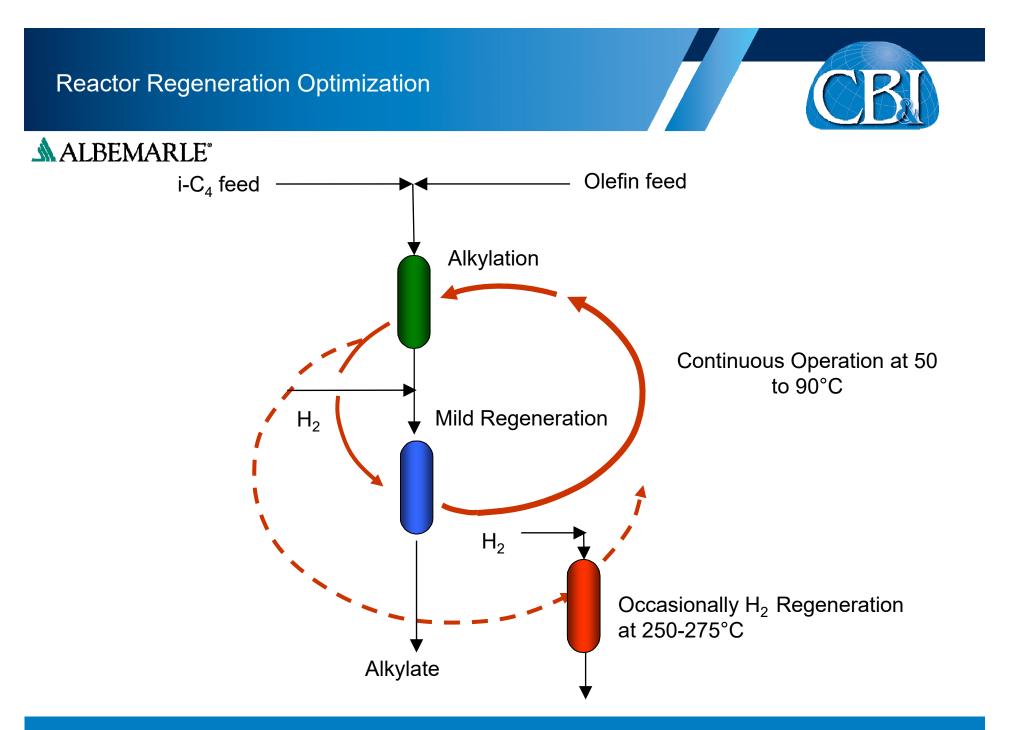
- 100 KTA alkylate capacity
- CB&I executed process design package in 2013
- Start-up: August 2015

AlkyClean Awards

• 2016 Presidential Green Chemistry Award from the U.S. EPA

AlkyClean References: Shandong Wonfull, Zibo, China

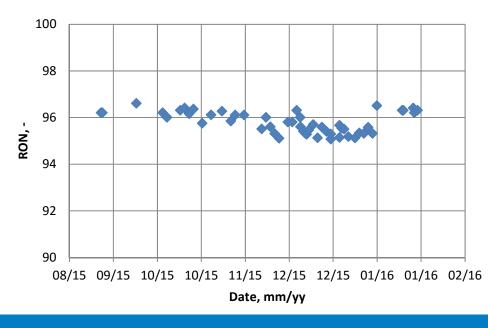



A World of Solutions

Shandong Wonfull Specifics

ALBEMARLE[®]

Hydrogen Rich Fuel Gas

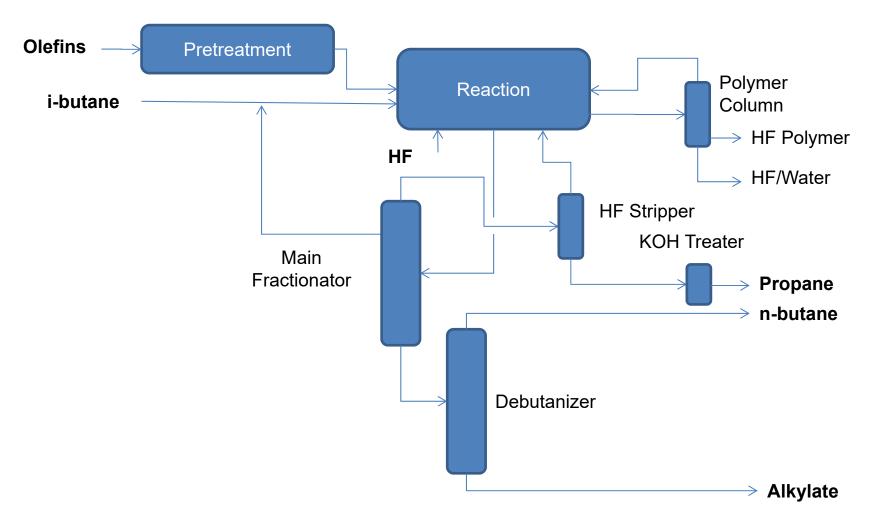


Shandong Wonfull: AlkyClean Product Quality

ALBEMARLE

RON	95-97
Sulfur	< 1 ppm
RVP	< 50 kPa
ASTM D-86 FBP	< 208°C

Feedstock / Operating Conditions Comparison



ALBEMARLE*

Operating Conditions Comparison					
	AlkyClean	HF Acid	Sulfuric Acid		
Operating Temperature, °C	50-90 °C	32-38 °C	-3 - 10 °C		
Feed I/O (External)	15 - 20 / 1	12 - 15 / 1	8 - 10 / 1		
Feedstock olefin variation sensitivity					
	AlkyClean	HF Acid	Sulfuric Acid		
Butene-2	Base	Base	Base		
Butene-1	Base	Base - 4.0 RON	Base		
lso-Butene (25 vol%)	Base - 0.5 RON	Base - 0.5 RON	Base - 1.0 RON		
Propylene (30 vol%)	Base - 1.0 RON	Base - 1.0 RON	Base - 1.5 RON		

HF Alkylation Unit Revamps

ALBEMARLE

HF Alkylation Revamp to AlkyClean: Feed Pretreatment

ALBEMARLE[®]

• Feed Pretreatment requirements similar

Feed Pretreatment Requirements					
	HF Alkylation	AlkyClean			
Mercaptan Removal	Recommended	Recommended			
Water Removal	Recommended	Recommended			
Selective Hydrogenation	Recommended	Recommended			
Hydro-Isomerization	Recommended	Not Needed			

- Feed Pretreatment section can be reused
- > If Hydro-Isomerization function exists, catalyst cost is reduced

HF Alkylation Revamp to AlkyClean: Reaction Section

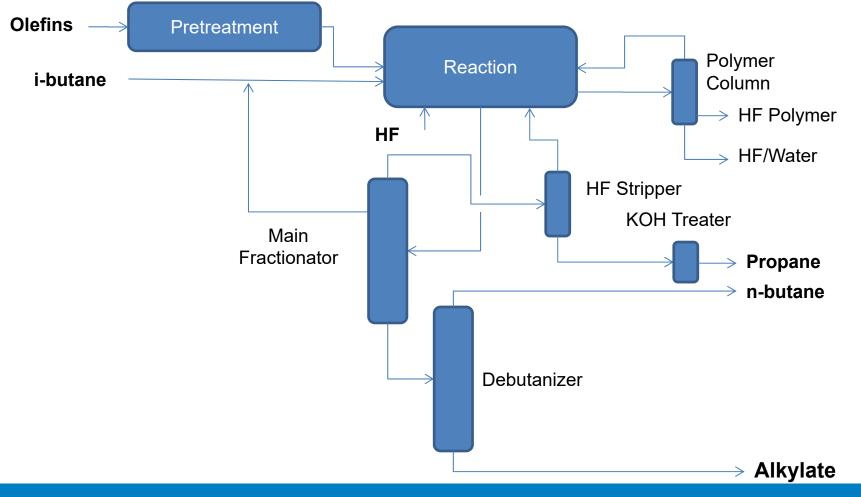
ALBEMARLE[®]

• Differences between HF Alkylation and AlkyClean

Reaction Condition Comparison				
	HF Alkylation	AlkyClean		
Reaction Temp	Ambient	50 - 90 °C		
Heat Removal	Cooling Water	Cooling Water		
Acid/Hydrocarbon contacting/separation	Required	Not Applicable		
Acid volume	Required	Not Applicable		

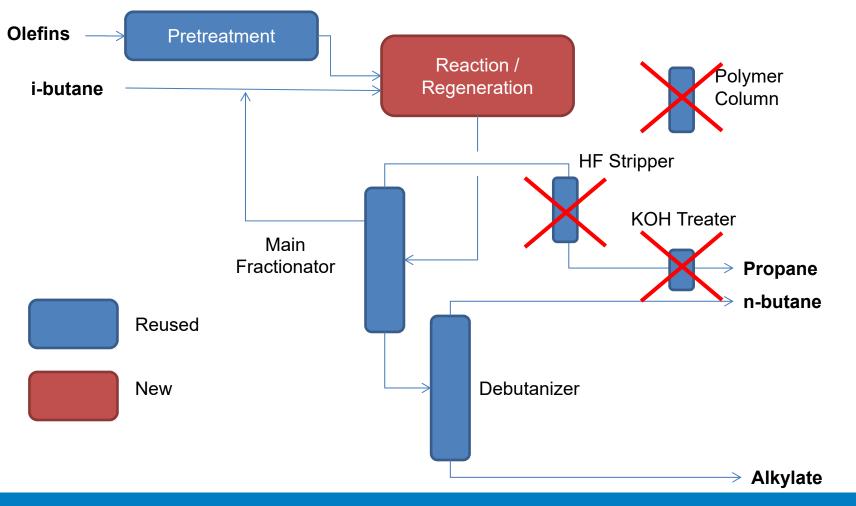
Reaction Section replaced by AlkyClean reactors and associated equipment

HF Alkylation Revamp to AlkyClean: Fractionations & Treaters



ALBEMARLE[®]

- HF IsoStripper:
 - Slightly Lower I/O ratio: 12-15 vs. 15-20
 - IsoStripper Trays may be replaced-High Capacity Trays
- HF Product Treaters:
 - HF Stripper is not required
 - KOH Treater is not required
- HF Regeneration:
 - HF polymer (rerun) column is not required


HF Alkylation

ALBEMARLE

AlkyClean[®] Revamp

ALBEMARLE[®]

HF Alkylation Revamp to AlkyClean

ALBEMARLE[®]

- Feed Pretreatment Section:
- HF Regeneration Section:
- HF Reactors Section:

- HF Product treaters:
- HF Alkylate Fractionation:

<u>Reuse</u>

<u>Decommission</u> HF polymer (rerun) column

Decommission Reactor Section to AlkyClean Reactors

Decommission HF Strippers & KOH Treaters

Reuse and/or Revamp

HF Alkylation Revamp to AlkyClean: Incentives

ALBEMARLE[®]

- Safety:
- Product quality:
 - No ASO = Higher Yield
 - Higher RON, due to insensitivity for Butene-1
 - Impact of products on downstream units
- Continuous cost of HF mitigation:
- Maintenance Cost:
 - No replacement of expensive materials
 - No corrosion issues
 - Less frequent shutdowns & turn around
- Operating costs:
 - Catalyst instead of HF acid processing

Peace of Mind Higher

None Eliminated Eliminated

Similar

Conclusions

ALBEMARLE[®]

- CB&I and Albemarle Successfully Developed & Commercialized The World's First Solid Catalyst Alkylation Process: AlkyClean
- AlkyClean Technology is **Proven & Demonstrated**:
 - High Alkylate Product Quality
 - Economically Viable
- Can easily Revamp HF Alkylation Units to AlkyClean
- AlkyClean Process Utilizes a Commercialized Solid Acid Catalyst, and therefore:
 - Is an Inherently Safer Alkylation Technology
 - Releases Refiners of HF Safety, Environmental and Operational issues
 - Provides Refiners with Peace of Mind

Copyright 2017, CB&I. All Rights Reserved.