

CHEMICAL RECYCLING VIA PLASTICS PYROLYSIS – TECHNICAL AND LEGAL HURDLES ON THE ROAD AHEAD

Henk Hagen (Dow), Philip de Smedt (Cefic) November 23rd, 2021

[®] Trademark of The Dow Chemical Company

RECYCLING OPTIONS

- Wikipedia:
 - The pyrolysis (or devolatilization) process is the thermal decomposition of materials at elevated temperatures in an inert atmosphere. It involves a change of chemical composition. The word is coined from the Greek-derived elements pyro "fire" and lysis "separating".
 - The process is used heavily in the chemical industry, for example, to produce ethylene, many forms of carbon, and other chemicals from petroleum, coal, and even wood, to produce coke from coal. It is used also in the conversion of natural gas (primarily methane) into non-polluting hydrogen gas and non-polluting solid carbon char, initiating production in industrial volume. Aspirational applications of pyrolysis would convert biomass into syngas and biochar, waste plastics back into usable oil, or waste into safely disposable substances.

PLATTS CIF NWE NAPHTHA CARGO SPECS

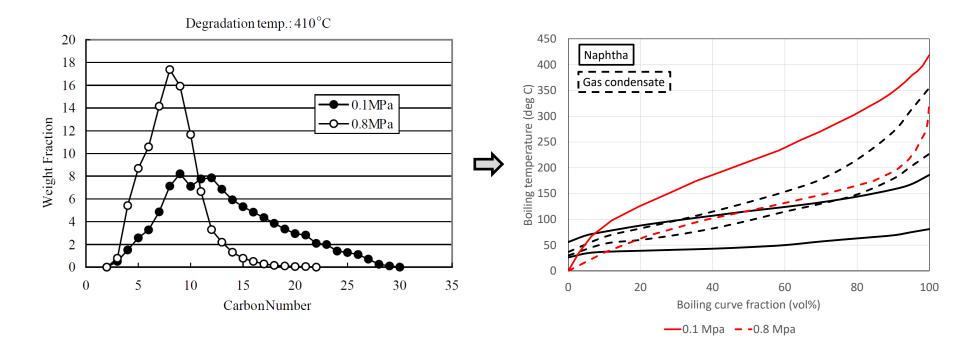
Specific Gravity at 15 C	max 0.735 g/ml
Reid Vapor Pressure	max 12.5 psi
Colour	min +20 Saybolt
Initial Boiling Point	min 30 deg C
Final Boling Point	max 180 deg C
Paraffins pct vol	min 65 %
Olefins pct vol	max 1 %
Naphthenes + aromatics pct vol	balance
Sulfur	max 500 ppm
H2S	max 10 ppm
_ead	max 50 ppb
Organic chlorides	max 3 ppm
Total chlorides	max 10 ppm
MTBE	max 50 ppm
Total Oxygenate	max 100 ppm
Mercury	max 5 ppb
Mercaptan sulphur	to be reported

https://www.spglobal.com/platts/plattscontent/_assets/_files/en/our-methodology/methodology-specifications/europe-africa-refined-products-methodology.pdf

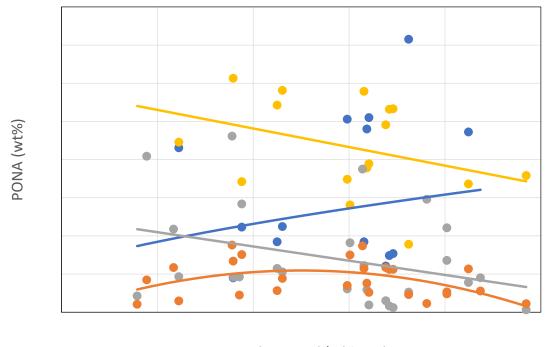
C-PPO QUALITY

Waste plastic quality

- Bulk plastic composition (PE/PP/PS etc.)
- Plastic cleanliness


Processing

- Reactor type
- Processing conditions (P, T, residence time)
- Use of catalyst / other additives
- Heat transfer motif / heat transfer medium


PLASTICS PROCESSING IMPACT ON C-PPO BOILING CURVE DISTRIBUTION

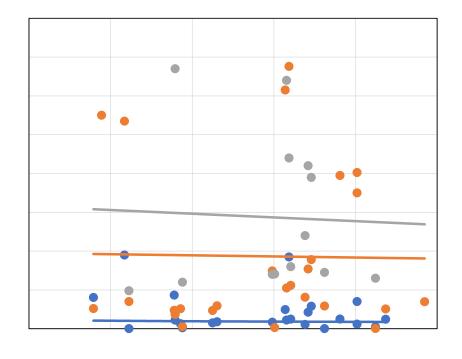
Dow

Boiling curves estimated as if all compounds are n-alkanes

CRUDE-PPO QUALITY VS. BOILING RANGE (1)

Naphtha specification:

- Paraffins min 65%
- Olefins max 1%


ABP = (IBP+FBP)/2 (deg C)

• Paraffins • Olefins • Naphthenes • Aromatics

Note: lines are added for indicative purposes only

CRUDE-PPO QUALITY VS. BOILING RANGE (2)

ABP = (IBP+FBP)/2 (deg C)

• Chlorine • Nitrogen • Oxygen

Dow

Note: lines are added for indicative purposes only

Oxygen (ppm)

Naphtha specification:

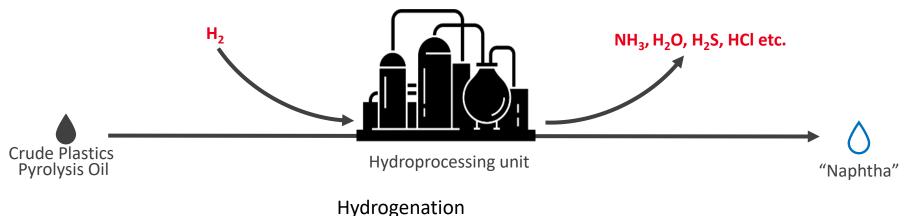
- Chloride max 10 ppm
- Oxygenate max 100 ppm

RISKS OF USING CRUDE PPO AS FEEDSTOCK

Olefins, naphthenes and aromatics

- Gum formation
- Product yield
- Process fouling

Heteroatoms (N, O, Halides)


- Corrosion
- Catalyst poisoning
- Off-spec product

Metals (Fe, Na, Si, etc.)

- Fouling
- Corrosion
- Catalyst poisoning

CRUDE PPO REFINEMENT VIA HYDROPROCESSING

(Di)-olefins \rightarrow Paraffins Aromatics \rightarrow Naphthenes

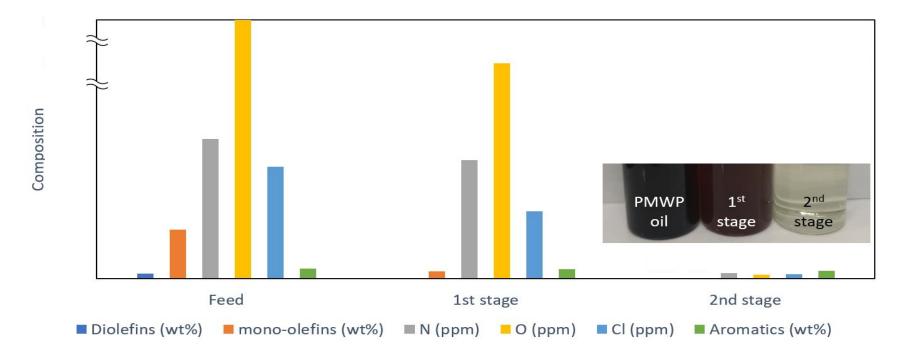
HydroDeSulfurization (HDS) HydroDeNitrification (HDN) HydroDeOxygenation (HDO) HydroDeChlorination (HDCl) HydroDeMetallization (HDM)

RISK OF C-PPO HYDROPROCESSING

(Di)-olefins

- Gum formation
- Fouling
- Excessive heat formation

Heteroatoms (N, O, Halides)


- Corrosion HCl/HF/HBr/H₂S
- Catalyst poisoning
- Fouling NH₄X precipitation

Metals (Fe, Na, Si, etc.)

• Catalyst poisoning

CAN HYDROPROCESSING DO THE NECESSARY REFINEMENT?

Seek

Together[™]