MCDERMOTT

Plant Life Expectancy Study by Arjen Reinders Principal Metallurgy & Welding Engineer

WE CONTRIBUTE IN DELIVERING INTEGRATED SOLUTIONS

Centre for Knowledge Management, Innovation & Research

Remaining Plant Life

- Introduction
- Plant Life Expectancy Study (PLES)
- Activities
- Failure Mechanisms
 - Corrosion Under Insulation (CUI)
- Inspection Techniques
- MDR Experience Site Visits
- Overview of executed PLES
- Conclusions
- Questions

Introduction

- Name: Arjen Reinders
- Principal Metallurgy Engineer & Welding Engineer at McDermott
 - Since 2001 started with ABB Lummus Global
 - CB&I in 2007
 - McDermott since 2018
- IWE (certified) since 2016

Remaining Life – Introduction We need to prevent this!

PLES Execution Plan

Plant Life Expectancy Study Activities

- Plant Life Expectancy Definition
 - Contract
 - Exclusions (e.g. sub contractor works)
- II. Document Review
- III. Site Survey (Visual External Inspections)
- IV. Plant History Audit
 - Interview with Operations
 - Interview with Inspection / Maintenance
- V. Conclusion Report / Presentation of Results

Document Review

To understand the basis and the history of the plant.

Review e.g.:

- Plant design data
- Inspection history
- Maintenance history
- Incident history
- Plant changes

Purpose and Report Deliverable

- Identify possible failure mechanisms
- Identify which equipment is at risk for each failure mechanism
- Identify the most suitable inspection technique and locations to detect the possible failure mechanism
- Estimate remaining life when sufficient data is available

Failure Mechanism Diagram - Crude Unit

Potential Failure Mechanisms Ethylene Unit (1)

- Corrosion Under Insulation (CUI)
- Wet H₂S Stress Cracking
- Hydrogen Induced Cracking
- Cooling Water Corrosion
- Amine Stress Corrosion Cracking
- Polythionic Acid Stress Corrosion Cracking
- Corrosion Fatigue
- Erosion
- Freezing Issues

Potential Failure Mechanisms Ethylene Unit (2)

- High Temperature Hydrogen Attack
- Creep
- Fatigue (high cycle)
 - Vibrations
- Thermal Fatigue
- Rebar Corrosion
- Low Temperature Embrittlement
- Carburization
- Oxidation
- Caustic Stress Corrosion Cracking

Corrosion Under Insulation (CUI)

- All insulated equipment and piping operating between -10 and 175°C
- Weather proofing
 - Gaps/openings in insulation and weather proofing
 - Dried out and cracked mastic sealings
 - Protrusions through insulation
- Transition from insulation to fire proofing at skirt
- Insulation not properly restored after maintenance
- Water sources (condensation)

Insulation Condition

Areas for Water Ingress Under Insulation

Source: NACE SP0198 Control of Corrosion Under Thermal Insulation and Fireproofing Materials More details can be found in API RP 583 Corrosion Under Insulation and Fireproofing

Inspection Techniques - Examples

- 1. Visual Testing (VT)
 - a) External + Insulation
 - b) Internal
- 2. Ultrasonic Testing (UT)
 - a) Wall Thickness
 - b) Crack Detection
- Magnetic Particle Testing (MT) / Liquid Penetrant Testing (PT) – Surface Cracks
- 4. Replica Testing Creep Detection
- 5. Vibration Monitoring Compressors

MDR Experience – Site Visits

Typical findings during site visits:

- 1. Insulation condition (old, new, cold)
- 2. Leakages
- 3. Housekeeping
- 4. Painting condition
- 5. Condition of supports and foundations
- 6. Steam and condensate leakages
- 7. Missing bolts/fixation for equipment

MDR Experience – Insulation Condition (old)

MDR Experience – Insulation (new)

MDR Experience – Insulation (cold)

MDR Experience – Leakages

MDR Experience - Housekeeping

MDR Experience – Painting Condition

MDR Experience – Supports and Foundations

MDR Experience – Steam and Condensate Leakages

MDR Experience – Missing Bolts / Fixations

Overview of PLES executed by MDR The Hague

- Total PLES 25 studies; including:
 - Petrochemical plants, e.g. Ethylene units
 - Refineries, e.g. CDU, VBU, HDS
- All over the world e.g.:
 - Mexico
 - Romania
 - Chili
 - China
 - The Netherlands
 - Etcetera

Conclusions

- Know your plant
- Know the Failure Mechanisms
- Apply suitable Inspection Technique
- Collect Data
- Estimate Remaining Lifetime
- PLES is a very useful method, for:
 - Debottlenecking
 - Revamp
 - Support for investment decision

Questions

Questions?

